Charles Ginnever at Storm King

Storm King Arts Center is a world-renowned sculpture park located about a hour North of Manhattan near the Hudson River. The permanent collection of the park features a number of works with Mathematical themes. Charles Ginnever’s steel sculpture “Prospect Mountain Project ( For David Smith)” from 1979 is an excellent example.
The work is comprised of a giant parallelogram that has been sliced diagonally into three parallel strips that are also parallelograms. Each strip has been folded twice at vertical creases. They are connected at two points along the lines of the folds.
The two side sections have the steel bending forward and the center parallelogram has the folds towards the back. This not only gives the flat plane of the metal sheet a 3-dimensional presence, but it also allows the sculpture to stand securely directly on the ground. The weathered organic texture of the steel contrasts with the hard edges of the geometry. The sculpture complements the natural surroundings of the park.
Susan Happersett
Advertisements

Ricardo Cardenas at De Buck Gallery

The exhibition “Abstractions of Nature” at De Buck Gallery features Cardenas’ sculptures and wall installations. Created using a multitude of small, painted, stainless steel wires these works remind me of the practice of cross hatching, used when drawing. In a drawing an artist would use short almost straight lines to built a gradient of lines from light to to dark to form the illusion of depth and shadow. This would give a 2-D drawing the illusion of 3-D space.
Here is gallery view of “Yellow Nest” and “White Nest” both from 2018. Cardenas has built curved surfaces in 3-D space using only small lines of stainless steel.
This close up view of “Yellow Nest”  shows the intricate architecture  within each sculpture. Inspired by nature and educated as a civil engineer, Cardenas presents elegant constructions with  biomorphic sensibilities.
Susan Happersett

More Art from JMM – San Diego

There were so much interesting work on display at the JMM that I wanted to explore a few more.

Tom Bates – “Six Easy Pieces” – 30 x 28 x 25 cm -Bronze – 2010

Tom Bates’ cast bronze sculpture “Six Easy Pieces” is based on one of the Chen-Gackstatter minimal surfaces. Mathematical minimal surfaces are skin-like surfaces where the area is locally as small as possible. Quite often when minimal surfaces are represented as sculpture they are shown with a smooth surface. Bate’s bronze is unpolished and rough. I really like this more organic form. It adds an unexpected hand made feel to the work.

Elizabeth Whiteley -“Euclidean Arabesque 1”
41 x 51 cm – graphite + color pencil on archival paper – 2017

One of the exciting things about returning to the JMM show over a number of years is being able to see how artists’ work changes. This year Elizabeth Whiteley is showing elegant geometric drawings. These new renderings were produced using two circles with radii in a 1:0.75 ratio and arcs measuring 180 and 270 degrees. The drawing references Euclid’s Elements Book Three: proposition 12. The series of colored lines Whiteley has used to illustrate chords on the imaginary surface brings the form to life. The shape seems to float over the surface of the paper.
In case you are wondering what I brought to the JMM this year… I had one of my new lace drawings in the exhibit. “Syncopated Hexagons” features elements created on six axis (instead of four). These elements possess order 6 rotational symmetry.

Susan Happersett – Syncopated Hexagons
35 x 11 x 4 cm – Ink on paper – 2017

Susan Happersett

Ruth Asawa at David Zwirner Gallery

Ruth Asawa studied at the Mountain College, and in the late 1940’s began making crocheted wire sculptures. This solo exhibition at at David Zwirner features a large collection of these hanging forms.

Almost all of the structures feature a vertical line of symmetry. No matter your vantage point in the gallery the reflective symmetry is visible.

This sculpture is referred to in the catalog as “Untitled, 1954, Hanging, Seven-lobed Continuous, Interwoven Form, with Spheres with in Two Lobes”. It shows another element of Asawa’s work: the interior and exterior forms change positions. They seem to flow through each other.
This phenomenon questions our preconceived ideas about the rules for inside and outside in a 3-D geometric shape.

Susan Happersett

TWINKLE IN THE EYE – A group show at Pablo’s Birthday Gallery

The current exhibit at the Pablo’s Birthday Gallery on the Lower East Side features a number of works with interesting geometric themes.

Henrik Eiben – Minnesota – Steel
Picture courtesy of the gallery

Henrik Eiben’s steel wall construction, titled “Minnesota” is built from a collection of isosceles right triangles. Joining two congruent triangles along their legs (sides that form the right angle) results in parallelograms. Adding a third triangle, a trapezoid is formed. The steel sections have been hinged together with leather and some of the triangles that make up this open frame are angled off the wall. This gives the work a more 3-D presence, with the breaking off the flat wall pale into the gallery space.

Karsten Konrad – VW – Mixed media
Picture courtesy of the gallery

“VW”  is a mixed media octagonal mosaic by Karsten Konrad. The walls of the sculpture are created using a series of parallel strips creating a series of tight concentric octagons. This is in contrast to the multicolored parallel strips in the patchwork of diagonals that make up the central image.
Susan Happersett

Holger Hadrich – by Sarah Stengle

Holger Hadrich makes complex, collapsible geometric structures out of steel wire, and then photographs them in a way that dissolves the pure determination of the geometry into a feeling of a fleeting memory. The context chosen is often an ordinary place that implies motion, or transition. Sidewalks, asphalt and rivers recur with the superimposition of a delicate geometric structure.

17-08-01These objects rarely obscure their backdrop but rather hover like an apparition. One can see right through them, as one could see through a ghost. In his hands, the timeless geometry of the Archimedean solids are presented as movable objects that we pass by in a fleeting world. The context for his creations underscore the idea of passage and form a sequence of ordinary by-ways transformed by an ongoing internal conversation with mathematical form.

17-08-02The objects themselves are based on polyhedra, which are usually conceived of as solid. In his hands, however, they are rendered flexible and collapsible. Their web-like delicacy show precision and immense patience. One can almost imagine the object being turned in hand as careful attention is paid to the vertices. In many cases they are punctuated by small brass washers or carefully formed loops, which form a secured but collapsible hub. A different aspect of the work is made apparent when the objects are held in the hands. They are designed to be collapsible. Many are collapsible along more than one axis. To understand the collapsibility of his constructs it is best to handle them or see them in motion. His video Medusa Tower below shows one of his structures expanding from a depth of about three inches to nearly five meters.

Art historians from Vasari to Wöfflin have debated the supremacy of linear versus painter pictorial devices in art.  These works are both simultaneously linear and painterly (malerisch). The absolute clarity of the mathematic constructs is intentionally obscured to become integral to the partially dissolved, or transient clarity of the object as photographed.  These linear forms become painterly through Hadrich’s lens. The geometric forms are pulled out of the originating mathematical abstractions and into our ordinary life, where they seem to hover on the brink of collapsing and disappearing.

17-08-03To quote Wölfflin: “Composition, light and color no longer merely serve to define the form, but have their own life absolute clarity has been partly abandoned to enhance the effect.” The resolutely normal sidewalks and fragments of asphalt are also transformed when viewed through the orderly but complex web of geometric construction of wire. One immediately intuits a precise order that stands against our own transience and feels patient, quiet and timeless.
You can find more about Hadrich’s work on his Facebook page.

This is Sarah Stengle’s first contribution to this blog. Sarah is an artist and writer based in St Paul, Minnesota.

More From The Bridges Conference 2015 in Baltimore

 

The use of computer generated drawing processes and inkjet printers is a popular means  of expression at the Bridges conference. Some of the more interesting examples on display were created by David Chappell. The artist builds a system of rules to generate graceful line drawings that are mathematically to related plant growth through space and time. The lines begin from a rooted position at the horizontal bottom of the picture plane and playful grow up into reaching tendrils. In order to achieve this lyrical organic quality (not an easy feat using mathematical algorithm computer generation) Chappell modifies the rules throughout the process. This extra attention allows the drawings to change and develop in a more free-form manner.

15-34-01

David Chappell -untitled – 2014
33 x 40 cm – Archival Inkjet Print
Picture courtesy of the artist and the Bridges Conference

Another means of creating computer assisted art is the use of laser cutting. In his work “Islamic Fractal Starflower”, Pill Webster has cut a lace-like pattern into a clear light blue acrylic sheet. The mathematics behind this pattern is a combination of two geometric themes: the symmetry in Islamic patterns and the recursive properties of fractals. This combination requires some heavy weight mathematics, but Webster’s choice of materials transforms  the complex theories into an ethereal presence. It has the appearance of being built from delicate and complex ice crystal. The juxtaposition between the serious mathematical generation and delicate physicality of the work create an interesting tension.

15-34-02

Phil Webster – Islamic Fractal Starflower – 2014
38 x 38 cm – Laser cut acrylic, light blue
Picture courtesy of the artist and the Bridges Conference

Nathaniel Friedman is one of my favorite artists for two reasons. First, he creates wonderful sculptures and prints and second because he is a very supportive of other artists. As the founder of the organization ISAMA – The International Society of Art, Mathematics and Architecture, he contacted me years ago to speak at one of the first Math Art conferences. This was my introduction into a whole community of other artists and mathematicians devoted to the aesthetics of Mathematics. I will be eternally grateful to Nat.

15-34-03

Nathaniel Friedman – Triple Twist Mobius – 2014
29 x 29 x 7 cm – Aluminum
Picture courtesy of the artist and the Bridges Conference

But back to the sculpture…. “Triple Twist Mobius” consists of three equal-sized aluminum bars each with a single twist. They are joined to form a triangle shape. The clean lines and the simplicity of the form are deceiving, this is a powerful shape. The 2-D photo does not do it justice. In the gallery each vantage point offers a different geometry, it  seems to change depending on where your stand. This act of looking at something from different perspectives is referred to as hyperseeing  (a concept Friedman taught me, Thank You!)

Susan Happersett

Bridges Conference 2015 in Baltimore

Every Summer the Bridges organization holds a conference devoted to Mathematics and the Arts. Bridges is an international organization whose sole mission is to foster and explore these interdisciplinary connections. This year the meeting was held in Baltimore Maryland in the beautiful University of Baltimore Law building. Each year the Art exhibition is one of the highlights of the gathering. This year was a particularly impressive display of work in a light and open space over three floors. Here are two photos of the gallery.

15-33-01
15-33-02

It has been very difficult for me to just single out a few art works to write about, for a complete overview I suggest checking out the Bridges website. Today I will focus on two works by two different artists that struck me particularly.

15-33-03

Taneli Luotoniemi – “The Hyper Cube” – 2015
Pencil on paper – 42 x 40 cm
Image courtesy of the artist and Bridges

I will start with a pencil  drawings by Taneli Luotoniemi. I have a real affinity for hand drawing and I feel Luotoniemi is able to achieve a remarkable subtly of line form and grey scale using only a pencil. “The Hypercube” Is a 2-D representation of a 3-D depiction of a 4-D cube. There have been many example of two dimensional art referencing hyper cubes but this is definitely a a more organic representation then most. This is achieved by the use of thick curved lines that meet at crossings of more solid shapes, instead of small points. By adjusting the grey scale of the pencil mark Luotoniemi gives the lines the appearance of weaving over and under each other. This is one of the most graceful visual interpretations I have seen.

15-33-04

David H Press – “Three ¾ Great Circles in Orange” – 2015
Laminated wood and cotton thread – 40 x 40 x 40cm
Picture courtesy of the artist and Bridges

David H. Press builds elegant hanging sculptures that are a type of 3-D line drawings. The support structures are curved shapes but the wires within these frameworks are straight lines that form what appear to be curved surfaces. Symmetry plays a major role in Press’ work. In “Three Great ¾ Circles in Orange”  the use of three circles would have created a sphere, but the ¾ circles create an asymmetrical frame work. Within the wire line work, however, there are some smaller areas with symmetrical properties. We are used to seeing complicated symmetries in Mathematical sculpture, but the use of the ¾ circles rips open the sphere, granting the viewer a fresh look.

There were so much interesting work on display this year it is hard to discuss it all in one  blog post, I will write more next week.

Susan Happersett

James Siena “New Sculpture” at Pace Gallery

Pace Gallery on 25th street in Chelsea is currently presenting the geometric sculptures of James Siena. Well known for his algorithmic paintings, Siena has been making sculptures throughout his career. At first working with tooth picks, and now new work using bamboo skewers, as well as bronze casts of previous pieces. Some of the work has very clear geometric patterns and others seem more chaotic. I have chosen two of the bamboo sculptures that  are about a particular  mathematical geometric phenomenon.

15-17-1

“Richard Feynman” , 2014

“Richard Feynman” from 2014 is a great illustration of self-similarity in three dimensions. Named after the famous 20th century Theoretical Physicist, this work is a cube within a cube within a cube. Each cube structure is composed of 4 by 4 by 4 cubes. Four of smallest cubes make up one cube in the medium cube structure and four of the medium cubes make up one of the large cubes on the large cube structure. Using the bamboo skewers as lines in the 3-D space the artist has created grids on three different scales.

15-17-2

“Morthanveld: Inspiral, Coalescence, Rungdown” 2014, 2015

“Morthanveld: Inspiral, Coalescence, Rungdown” from 2014-2015 is complex tower created using 6 regular pentagons. Instead of stacking them at the same angle, Siena has  twisted  each consecutive pentagon 36 degrees. The finished sculpture is a spiraling geometric column. Siena uses a building  technique of wrapping string around the vertices to to attach the bamboo skewers both in the interior and the exterior shapes. This requires a a very hands on process adding a human element to the Mathematical subject matter.

Pictures courtesy of the gallery and the artist.

Susan

Holly Laws “Cage Crinolines” at Muriel Guépin Gallery

The exhibition “No Woman, No Cry” at Muriel Guépin Gallery features the work by three women whose subject matter is the female identity in society. They reference both the tradition of feminine crafts, as well cultural expectations.

Holly Laws has created a series of small, detailed, handmade models of historic garments. Her intricate “Cage Crinoline” sculptures show the mathematics involved in the design of these 19th century hoop skirt figure enhancers. They are on  display under glass domes, hinting at the Victorian practice of preserving and displaying things like a tiny skeleton in a cabinet of curiosities.

15-16-1

Holly Laws – “Cage Crinoline 1864” – 2015
Picture courtesy of the artist and the gallery

The structure for “Cage Crinoline 1864” consists of a series of concentric ellipses. They have been used to create a vertical column with two perpendicular reflection planes of symmetry. With the utmost precision Laws has built a 3-dimensional expression of the aesthetic qualities of ellipses. This complex geometry has been used in a miniaturization of an undergarment that if it were an actual garment would not even be seen in public. The mathematics would be hidden under a showy display of skirt fabric. I was really drawn to this “Crinoline Cage” because it reminds me to look beneath the surface and in unexpected place to find the beauty in Mathematics.

Susan